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a b s t r a c t 

Background and Objective : The generation of three-dimensional (3D) medical images has great application 

potential since it takes into account the 3D anatomical structure. Two problems prevent effective training 

of a 3D medical generative model: (1) 3D medical images are expensive to acquire and annotate, result- 

ing in an insufficient number of training images, and (2) a large number of parameters are involved in 

3D convolution. Methods : We propose a novel GAN model called 3D Split&Shuffle-GAN . To address the 3D 

data scarcity issue, we first pre-train a two-dimensional (2D) GAN model using abundant image slices and 

inflate the 2D convolution weights to improve the initialization of the 3D GAN. Novel 3D network archi- 

tectures are proposed for both the generator and discriminator of the GAN model to significantly reduce 

the number of parameters while maintaining the quality of image generation. Several weight inflation 

strategies and parameter-efficient 3D architectures are investigated. Results : Experiments on both heart 

(Stanford AIMI Coronary Calcium) and brain (Alzheimer’s Disease Neuroimaging Initiative) datasets show 

that our method leads to improved 3D image generation quality (14.7 improvements on Frchet inception 

distance) with significantly fewer parameters (only 48.5% of the baseline method). Conclusions : We built 

a parameter-efficient 3D medical image generation model. Due to the efficiency and effectiveness, it has 

the potential to generate high-quality 3D brain and heart images for real use cases. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

With the availability of large-scale annotated datasets like Ima- 

eNet [1] , convolution neural networks (CNNs) have achieved un- 

recedented success in computer vision [2] . Benefiting from CNNs, 

edical imaging research has made great advancements in the 

lassification [3] , segmentation [4–6] , detection [7] , reconstruc- 

ion [8] , and registration [9] of two-dimensional (2D) medical im- 

ges. However, 3D medical image research lags behind due to the 

ack of large-scale 3D medical image datasets. As a result of the 

omplex collection procedure, expert annotation, privacy concerns 

nd patient consent, it is challenging to build a large-scale, 3D 

edical dataset similar to ImageNet. 
∗ Corresponding author. 

E-mail address: mohammed.bennamoun@uwa.edu.au (M. Bennamoun) . 
1 Most work was done at Harry Perkins Institute of Medical Research. 
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One widely-used solution for the data deficit of medical images 

s Generative Adversarial Networks (GANs) [10] . These networks 

reate high-quality synthetic images to mimic realistic data distri- 

utions. An example is using GANs with Wasserstein distance and 

erceptual loss for low-dose computed tomography (CT) image de- 

oising [11] . Perceptual loss cannot be directly used for 3D med- 

cal images due to the lack of interpretable pre-trained 3D mod- 

ls. A cyclic loss GAN was used by [12] to reconstruct MRI images. 

sing cycle-consistent GANs, [13] translated magnetic resonance 

MR) images to CT images. Albeit effective in mitigating the data- 

eficit challenge, most existing GANs-based methods are designed 

or 2D medical image generation. Therefore, they do not incorpo- 

ate information about the 3D anatomical structure [14] . Various 

edical applications require the 3D anatomical structure, including 

alcium scoring [15,16] of cardiac CT Coronary Angiograms (CTCAs), 

nd brain tumor segmentation [17,18] . Unfortunately, there are two 

ractical issues that hinder the effective training of the 3D med- 

https://doi.org/10.1016/j.cmpb.2023.107685
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107685&domain=pdf
mailto:mohammed.bennamoun@uwa.edu.au
https://doi.org/10.1016/j.cmpb.2023.107685
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cal generative model, preventing the use of GANs in 3D medical 

maging. 

First of all, there are usually insufficient 3D medical images 

o train effective 3D generative models. The effective training of 

D CNNs with natural videos relies on large-scale datasets, such 

s Moments in Time [19] with 1 million short videos, and Kinet- 

cs [20] with 750k video clips. In comparison, medical datasets 

ontain far fewer 3D images. For example, Stanford AIMI Coronary 

alcium (COCA) dataset [21] only contains 787 CTCAs. To generate 

D images, [22] used 991 brain MRI images from the Alzheimers 

isease Neuroimaging Initiative (ADNI) dataset [23] . Training an ef- 

ective 3D generative model is difficult with such small datasets of 

D medical images. 

Secondly, 3D convolution layers have a large number of param- 

ters, making training time slow and prone to overfitting. As a re- 

ult of 3D convolution, weight parameters take on an additional di- 

ension. For example, the conventional 3 × 3 convolution expands 

o 3 × 3 × 3 in the 3D case. Adding the third dimension allows the 

odeling of the 3D anatomical structure, but it also involves the 

ntroduction of an excessive number of parameters and computa- 

ions, resulting in slower training. Moreover, the model is prone to 

verfitting due to the contrast between the large number of pa- 

ameters and the small number of 3D training images. 

To address the above two problems, we propose a novel GAN 

odel, dubbed 3D Split&Shuffle-GAN for effective and efficient 3D 

edical image generation. The proposed model improves existing 

tate-of-the-art GANs (e.g., StyleGAN2 [24] ) from two perspectives: 

raining strategy and network architecture (see Fig. 1 ). 

The proposed training strategy takes advantage of the availabil- 

ty of 2D image slices to train a 2D GAN model. It then inflates the

D weights to initialize the 3D GAN model. As the 3D GAN model 

s initialized with informative 2D weights, it can focus more on 3D 

natomy, which results in a better generation of 3D images. By de- 

ign, the 2D GAN shares a similar architecture as the 3D GAN, with 

he exception of the additional convolution dimension (e.g., 3 × 3 

onvolution vs. 3 × 3 × 3 convolution). This enables the 2D weights 

o be seamlessly expanded to 3D using the weight inflation tech- 

ique [25] . Since the original inflation was designed for classifica- 

ion models rather than generative models, we evaluate five new 

nflation variants through extensive experiments to determine the 

ost suitable one for the task of 3D image generation. 

For the network architecture, we devise novel Channel 

plit&Shuffle modules to improve both the generator and discrim- 

nator networks. For the generator, since the state-of-the-art style- 

ased models (e.g., StyleGAN2) incorporate style vectors into con- 

olution weights as a modulated convolution, efficient convolution 

perations (e.g., depthwise separable convolution [26] or group 

onvolution [2] ) cannot be directly adopted. This is mitigated by 

ur Split&Shuffle module, which splits the feature channels into 
ig. 1. The general pipeline of our 3D generative model, which includes our contri- 

ution to both the training strategy (inflate 2D weights, colored in blue) as well as 

he network architecture (Split&Shuffle GAN, colored in orange). (For interpretation 

f the references to colour in this figure legend, the reader is referred to the web 

ersion of this article.) 
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2 
wo equal branches and performs a modulated 3D convolution for 

ach branch. Then, the output channels are concatenated and shuf- 

ed to encourage feature exchanges. With this design, the num- 

er of parameters of the generator is reduced by a factor of 2. For 

he discriminator, the number of parameters is further reduced by 

early a factor of 4 by replacing one of the 3 × 3 × 3 convolutions

ith 1 × 1 × 1 convolution. Although the number of parameters for 

oth the generator and discriminator is significantly reduced, the 

evised modules achieve a much better performance than the orig- 

nal one. Under the extremely data-deficit challenges of generating 

D medical images, our parameter-efficient model is less likely to 

verfit than the original model. 

To demonstrate the effectiveness of the training strategy and 

etwork architecture, we investigated five novel weight inflation 

ariants as well as five network design choices on the heart 

ataset (COCA). In addition, we performed experiments on the 

rain dataset (ADNI) to demonstrate the general applicability of 

ur method. 

To summarize, this paper makes the following contributions to 

D medical image generation: 

• A novel 3D Split&Shuffle-GAN model for 3D medical image gen- 

eration is proposed, and new inflation strategies are developed 

to facilitate training of 3D medical generation models. 
• Parameter-efficient Channel Split&Shuffle modules are devel- 

oped for both the generator and discriminator networks, which 

reduces the number of parameters (by a factor of at least 2) 

and improves generation quality (FID). 
• We conducted comprehensive experiments to verify the effec- 

tiveness of the inflation strategy and network architecture. We 

achieved state-of-the-art performance on both the heart and 

brain datasets. 

. Related work 

.1. Generative models for medical imaging 

The most popular model for generating synthetic images is the 

enerative adversarial networks (GANs) [10] . The GANs model syn- 

hesizes realistic images from a random noise variable and uses a 

iscriminator to distinguish between the synthesized images and 

he realistic images. The distribution of the synthesized images 

radually approaches the distribution of real images with the alter- 

ating training of the generator and discriminator. State-of-the-art 

ANs use the style-based generation technique [24,27] , in which 

tyle vectors are generated (for controlling the style of image gen- 

ration) from a mapping network. 

Providing annotations to large numbers of images in the field of 

edical imaging is a challenging task. The use of GANs is thus nat- 

rally adopted to solve a number of medical problems [3,11–13,28–

3] , such as classification, segmentation, registration, low dose CT 

enoising, and MR to positron emission tomography (PET) syn- 

hesis. GANs were used by [3] to generate synthetic CT images 

or data augmentation to enhance liver lesion classification perfor- 

ance. RefineGAN [12] proposes a cyclic consistency loss for the 

odified variant of the deeper generator and discriminator net- 

orks to deal with the compressed sensing magnetic resonance 

maging (CS-MRI) reconstruction problem. To improve the conven- 

ional GANs for the low dose CT (LDCT) denoising task, [11] em- 

loyed two practical methods, namely Wasserstein distance and 

erceptual loss. A-CycleGAN [13] makes use of variational autoen- 

oding (VAE), attention, and cycle-consistent generative adversarial 

etwork (CycleGAN) to improve existing MR-to-CT image transla- 

ion algorithms. [31] proposed an effective adversarial U-Net archi- 

ecture along with different normalization techniques to solve the 

RI to PET image synthesis task. 
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Despite the wide range of models and GAN variants proposed 

or medical imaging problems, most of them only focus on gener- 

ting 2D images, disregarding the 3D anatomical structure. Only 

 few attempts have been made to generate 3D images. Lever- 

ging an α-GAN, [22] utilizes the variational autoencoder (VAE) 

nd GAN to generate 3D synthetic brain MRI images. [4] proposed 

 segmentation-guided style-based generative adversarial network 

SGSGAN) for synthesizing full-dose PET images, where a style- 

ased generator is directly used for style modulation. [34] pro- 

osed a hierarchical shape-perception network (HSPN) for 3D brain 

econstruction (point cloud) from a single incomplete image. In 

ontrast, our method generates 3D medical images with only ran- 

om variables as input. By extending StyleGAN2’s 2D convolutions 

o 3D convolutions, [35] used 3D-StyleGAN to generate 3D brain 

RI images. A comprehensive review of the usage of GANs in 

D data can be found in [14] . Since most existing methods lift 

D GANs models to 3D in a straightforward manner, the num- 

er of parameters increases significantly, making it challenging to 

rain the model effectively. In this paper, we propose both effective 

raining strategies and efficient model architectures to generate 3D 

edical images using 3D GANs. 

.2. Training 3D convolution neural networks 

A multitude of research effort has been directed toward 3D 

NNs in the field of natural images, especially for the spatiotem- 

oral analysis of videos. The main idea is to introduce a third 

onvolution dimension ( k × k × k ) to capture the temporal depen- 

encies for video applications such as action recognition [25] . The 

raining of 3D CNN models usually relies on large-scale video 

atasets, e.g., Kinetics-700 [20] with 750k video clips, Moments 

n Time [19] with 1 million short videos. However, due to the 

igh annotation costs, patient consent issues, and expert annota- 

ion challenges, creating 3D medical image datasets of similar scale 

s not feasible. As a result, training 3D medical models is challeng- 

ng. 

Using degenerated 2D spatial information, another line of work 

ontributes to initializing 3D convolution weights by utilizing ben- 

ficial priors. For example, [25] proposed an inflation strategy to 

tack 2D weights for the 3D weights initialization. The video vi- 

ion Transformer is trained using the central frame initialization 

trategy in [36] . To our knowledge, no similar initialization tech- 

ique has been explored in 3D medical GANs. On the one hand, the 

hird dimension in video analysis corresponds to temporally vary- 

ng frames, while the third dimension in medical images describes 

he 3D anatomical structure. On the other hand, the interplay be- 

ween the discriminator and generator makes the training process 

ore complex than that of classification models. In this paper, we 

onsider both the 3D anatomical structure and the interplay be- 

ween the discriminator and the generator to facilitate the 3D GAN 

raining and architecture design. 

.3. Parameter-efficient 3D convolution neural networks 

3D convolution neural networks are challenged by the large 

umber of parameters included by the additional third dimension. 

here are two main approaches to addressing this issue: tensor 

ecomposition and efficient module design. In tensor decomposi- 

ion, the low-rank tensor decomposition algorithms are applied to 

e-calculate the convolution weights, thereby compressing the net- 

ork and reducing the number of parameters. For example, Tensor 

rain has been used in [37] , CANDECOMP/PARAFAC (CP) decompo- 

ition is applied in [38,39] , and Tucker decomposition is adopted 

n [40] . In spite of their mathematical soundness, these methods 

equire specific re-implementation of existing convolution opera- 

ions and cannot take advantage of the latest hardware accelera- 
3 
ion (e.g., the NVIDIA cudnn library). In efficient module design, 

arious parameter-efficient modules (e.g., bottleneck [41] , group 

onvolution, depthwise separable convolution, and pointwise con- 

olution) are devised to replace the original module. These efficient 

odules are re-arranged and combined to form different network 

rchitectures. In MobileNet [26] , for example, depthwise separable 

onvolutions are used to construct a lightweight deep architecture 

or mobile devices. SqueezeNet [42] combines pointwise convolu- 

ion and regular convolution to form a Fire block. The computation 

ost of ShuffleNet [43] is reduced by using pointwise group convo- 

ution. A comprehensive analysis of these modules can be found in 

44] . 

All the above parameter-efficient designs are based on classifi- 

ation models, which cannot be directly and easily adopted in 3D 

enerative models, such as StyleGAN2. StyleGAN2’s style modula- 

ion mechanism will be destroyed if these modules are trivially 

dopted. To address this issue, we propose customized 3D modules 

or the style-based generative models to enable parameter-efficient 

eneration of 3D medical images. 

. Methods 

.1. Preliminary of 3D medical image generation 

.1.1. Overview of stylegan2 model 

Mapping Network A key difference between style-based genera- 

ive models (e.g., StyleGAN2) and previous GANs is the introduc- 

ion of the mapping network f . Specifically, given a latent code 

 ∈ Z , f : Z → W first produces a vector w ∈ W . The learned affine

ransform A is then applied to w to obtain the generator’s per-layer 

tyle vectors s . 

Generator In the generator, original StyleGAN [27] directly uti- 

izes the style vectors for adaptive instance normalization (AdaIN) 

n the feature maps, which will cause characteristic artifacts such 

s droplets. To mitigate these unrealistic artifacts, StyleGAN2 incor- 

orates the style vectors into the weight modulation (Mod) oper- 

tion, then applies the demodulation (Demod) to serve as the in- 

tance normalization. 

odulation: w 

′ 
i jk = s i · w i jk (1) 

emodulation: w 

′′ 
i jk = w 

′ 
i jk / 

√ ∑ 

i,k 

w 

′ 
i, j,k 

2 + ε (2) 

here w, w 

′ 
, w 

′′ 
are the original, modulated and demodulated con- 

olution weights, s i is the style vector corresponding to the i -th 

eature map, j, k iterate the output feature maps and the spatial 

esolution, ε is a small constant to avoid numerical issues. In the 

bove modulation and demodulation operations, the style vectors 

re directly entangled with convolution weights, which removes 

he characteristic artifacts while retaining the style controllability. 

owever, this also impedes the straightforward modification to the 

onvolution layers, e.g., depthwise separable convolution (details in 

ection 3.3 ). 

Discriminator The discriminator of StyleGAN2 introduces a mini- 

atch standard deviation layer to calculate the deviation of a mini- 

atch and concatenates it to the original feature maps. This re- 

uces the dependency on a minibatch to encourage diverse gen- 

rations. 

.1.2. 3D Medical image generation 

The StyleGAN2 was originally designed for 2D natural image 

eneration. To apply it to the generation of 3D medical images, 

 straightforward approach [35] is by lifting all the 2D convolu- 

ion operations to the 3D convolution operations, e.g., expanding 

he 3 × 3 convolutions to the 3 × 3 × 3 convolutions. Albeit simple, 
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Fig. 2. The overall architecture of the proposed 3D Split&Shuffle-GAN. It is composed of a Mapping Network, a Generator, and a Discriminator. Mapping Network maps a 

latent variable z to the style vector space W and produces the per-layer style vectors with a learned affine transform (A). The generator starts from a constant 3D input. 

Then it controls the 3D generation styles with the per-layer style vectors and adds details from the per-channel scaled (B) noise input. Weight Mod&Demod incorporates the 

style vector into the convolution operation ( w 

(1) 
3 

, w 

(2) 
3 

, w 

(3) 
3 

, . . . represent the 3D convolution weights for first, second, third,...layers). Discriminator tries to differentiate the 

real 3D images from the generated fake 3D images. Inside both the Generator and Discriminator, we devise novel Channel Split & Shuffle modules for parameter-efficient 

3D convolution operations, which are customized for the style-based generation framework. 
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his approach will significantly increase the number of parameters, 

hereby posing two practical issues: (1) it will require a large num- 

er of 3D images for training; otherwise, the model suffers overfit- 

ing and mode collapse issues 2 , and (2) the largely increased pa- 

ameter number will slow down training and generation. However, 

o existing methods have simultaneously addressed both issues. 

herefore, it is non-trivial to improve StyleGAN2 for 3D medical 

mage generation. 

In this paper, we deal with the issues from the training strat- 

gy (Weight Inflation in Section 3.2 ) and network architecture 

Split&Shuffle in Section 3.3 ) perspectives and propose an efficient 

D generative model as shown in Fig. 2 . 

.2. Inflating 2D convolution weights 

This section discusses how to design a training strategy to 

enerate synthetic 3D medical images and overcome the issue of 

ata scarcity. Transfer learning [46] is a widely-used technique to 

vercome the data paucity of the target task by employing addi- 

ional external datasets. As an example, ImageNet [1] is used as 

n external dataset for a variety of tasks, including object detec- 

ion, and segmentation. In MinGAN [47] , knowledge is transferred 

rom GANs to domains with few images. It is currently difficult 

o apply the transfer learning technique for 3D GAN models in 

edical research due to the lack of large datasets and effective 

ransfer learning strategies. 3DSeg-8 dataset [48] has been aggre- 

ated from eight datasets to facilitate transfer learning between 

D medical images for liver segmentation and nodule classifica- 

ion. However, there are only tens to hundreds of 3D images of 

rgans/tissues in each dataset in 3DSeg-8, which makes GANs in- 
2 Overfitting means that on small datasets, the discriminator overfits to the train- 

ng examples and training starts to diverge [45] . Mode collapse means that the gen- 

rator only produces a limited set of outputs. 

r

t

G  

b

4 
apable of transferring detailed knowledge. Moreover, the interplay 

etween the generator and discriminator poses a different transfer 

earning challenge compared to classification tasks with a single 

etwork. 

Although direct transferring from external datasets is not feasi- 

le for 3D medical image generation, we note an interesting and 

elpful observation: 2D slices in a medical dataset are several 

agnitudes larger than 3D images . As an example, COCA [21] con- 

ains only 787 CTCA images, but these CTCA images contain 39,281 

D slices. Hence, the number of these 2D slices is sufficient to train 

 2D generative model such as StyleGAN2. Since 2D and 3D gen- 

rative models have distinct weights, it is not possible to trans- 

er weights directly from 2D to 3D generative models. As a result, 

e are naturally drawn to another technique called weight infla- 

ion [25] , which enables effective 3D network training from the 

re-trained 2D weights. 

Weight inflation was first introduced in [25] for the design 

nd training of 3D video action recognition networks. The method 

as been applied to both CNNs and Transformers-based 3D mod- 

ls [25,36,49] . In technical terms, it extends/inflates/copies the 2D 

onvolution weights along the third dimension (e.g., temporal di- 

ension in the video) to provide a more favorable initialization 

or the 3D convolution networks. To ensure feasible inflation from 

D weights to 3D models, the 2D and 3D networks must have 

he same basic structure except for the additional third dimension 

e.g., the 3 × 3 and 3 × 3 × 3 convolutions should have the same 

umber of channels). To our knowledge, this technique has not 

een applied to medical image analysis for effective 3D medical 

mage generation . 

Considering the application differences between video action 

ecognition and 3D medical image generation, we propose five cus- 

omized inflation strategies to facilitate the training of 3D Style- 

AN2. Here, we set the size of convolution weights to be 3 × 3 × 3 ,

ut our strategies can be easily adapted to other weight sizes. 
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et w 2 ∈ R 

C I ×C O ×3 ×3 denote the pre-trained 2D convolution weights 

nd w 3 ∈ R 

C I ×C O ×3 ×3 ×3 denote the corresponding 3D convolution 

eights ( C I represents the number of input channels, C O represents 

he number of output channels). At first, we initialize w 3 from a 

andom Gaussian N (0 , 0 . 1) . Then, the weight w 3 is modified by

he following inflation strategies: 

• Inflate-1 : only inflating 1 center dimension. 

w 3 [: , : , 1 , : , :] = w 2 . (3)

• Inflate-2 : inflating 2 dimensions. 

w 3 [: , : , 0 , : , :] = w 2 , w 3 [: , : , 1 , : , :] = w 2 . (4)

• Inflate-3 : inflating all 3 dimensions. 

w 3 [: , : , 0 , : , :] = w 2 , w 3 [: , : , 1 , : , :] = w 2 , 

w 3 [: , : , 2 , : , :] = w 2 . (5) 

• Inflate-ASC : inflating the axial, sagittal, and coronal planes of 

3D medical views. 

w 3 [: , : , 1 , : , :] = w 2 , w 3 [: , : , : , 1 , :] = w 2 , 

w 3 [: , : , : , : , 1] = w 2 . (6) 

• Inflate-NWI : the negative weight initialization (NWI) is used 

here, with the center dimension owing a larger value and the 

other dimensions owing negative values ( T = 3 ). 

w 3 [: , : , i, : , :] = αi ∗ w 2 , αi = 

{
2 T −1 

T 
, if i = 1 

− 1 
T 
, otherwise . 

(7) 

By design, different inflation strategies offer diverse ways of 

eusing the 2D weights: the reusing degree increases from Inflate- 

 to Inflate-3; Inflate-ASC considers the anatomical views; Inflate- 

WI modifies Inflate-1 with more attention on the center dimen- 

ion and negative weights on others. Intuitively, these inflation 

trategies introduce helpful 2D structure priors through weight ini- 

ialization, which significantly reduces the training burden of the 

D convolution weights. In this way, by focusing more on the third 

imension (for anatomy learning), the generative model is able to 

enerate high-quality 3D images quickly and efficiently. 

.3. Efficient 3D architecture design 

Although inflation strategy mitigates the lack of 3D data in 

raining the 3D GAN model, it still suffers from the large number 

f model parameters. In this section, we address this issue from 

he perspective of efficient 3D architecture design. 

We observe that most of the parameters in the 3D neural net- 

ork architecture originate from the 3D convolution operation, 

hich extends the 2D convolution weights to 3D, to model the 3D 

ontextual and anatomical structures (e.g., lifting 3 × 3 weights to 

 × 3 × 3 ). Existing efficient 3D architecture designs mainly focus 

n parameter-efficient 3D convolution. On the one hand, factor- 

zed high-order CNNs are proposed with different tensor decom- 

osition algorithms such as Tensor-Train (TT) [37] , CP decomposi- 

ion [38,39] , Tucker Decomposition [40] . These methods compress 

etworks and reduce their parameters by applying low-rank tensor 

ecompositions to high-order weights. On the other hand, driven 

y the requirements of mobile devices, various parameter-efficient 

onvolution variants have been devised and combined into effi- 

ient architectures, such as group convolution [2] , bottleneck [50] , 

epthwise separable convolution [26] . Group convolution divides 

he channels into groups and performs convolution only within 
5 
ach group. Bottleneck was introduced in ResNet [50] to reduce 

he number of channels of the 3 × 3 convolution by wrapping 

t with two 1 × 1 convolutions. With depthwise separable con- 

olutions, the standard convolutions are factorized into a depth- 

ise convolution (i.e., a group convolution with a group num- 

er equal to a channel number) followed by a 1 × 1 pointwise 

onvolution. 

The above designs were developed to improve the efficiency of 

arious applications, e.g., HO-CPConv [39] for spatiotemporal fa- 

ial emotion analysis, MobileNet [26] for image classification and 

bject detection, and 3D-MobileNet [44] for video action recog- 

ition. Despite this, the efficient 3D GANs architecture is rarely 

tudied, especially for the state-of-the-art StyleGAN2 model. We 

ttribute this to two possible reasons: (1) The StyleGAN2 archi- 

ecture is more delicate than classification models, hindering the 

traightforward adoption of existing modules such as tensor de- 

omposition, group convolution, or depthwise separable convolu- 

ion. Specifically, the style vectors are absorbed in the modula- 

ion and demodulation operations (Equations 1,2 ), which sets up 

urdles for existing modules. (2) As a result of the interplay be- 

ween the discriminator and generator, GANs training is difficult. It 

s non-trivial to directly use the same modules for the discrimina- 

or and generator to achieve the best performance. 

Based on the above analysis, we propose a unique design cus- 

omized to the StyleGAN2 model for parameter-efficient genera- 

ion ( Fig. 3 ). For the generator, since the direct adoption of exist- 

ng efficient modules (e.g., group convolution, depthwise separa- 

le convolution) will break the entangled structure of the convo- 

ution weights and style vectors (Equations 1,2 ), we equally Split 

he feature maps, using the channel split operation, to create two 

ranches. The modulation and demodulation operations for the 

tyle vectors and convolution weights are individually applied to 

ach branch. Afterwards, the outputs of the two branches are con- 

atenated, and the Channel Shuffle operation is performed, allow- 

ng information to be shared between two channels. If the Chan- 

el Shuffle operation is not performed, the generator is considered 

o be two independent networks. Channel Shuffle enables hybrid 

nd diverse pattern combinations across branches to facilitate im- 

ge generation quality. For the discriminator, as neither modulation 

or demodulation is applied, there is more flexibility in improv- 

ng the design. Therefore, we devised two asymmetric branches 

ith 3 × 3 × 3 and 1 × 1 × 1 convolutions. The 1 × 1 × 1 convolu-

ion leads to a further parameter reduction while compromising 

he local spatial structure. But this is rectified by the Channel Shuf- 

e operation, which exchanges information by shuffling the feature 

aps of 1 × 1 × 1 and 3 × 3 × 3 convolutions. 

Considering C = 32 in Fig. 3 , both the input and output feature

aps are of size 32 × H × W × D . Without splitting, the size of the

onvolution weight is 32 × 32 × 3 × 3 × 3 . With splitting, the in- 

ut map is split into two 16 × H × W × D branches, each undergo- 

ng a 3D convolution (weight size 16 × 16 × 3 × 3 × 3 ). The outputs 

f two branches are concatenated to get the feature map of size 

2 × H × W × D . So, the total size of the convolution weight is 2 ×
6 × 16 × 3 × 3 × 3 , which means the generator enjoys a parameter 

eduction of 2. Similarly, the discriminator has a total weight size 

f 16 × 16 × 3 × 3 × 3 + 16 × 16 × 1 × 1 × 1 , which means it enjoys

 parameter reduction of nearly 4 (3.857). 

We also propose several other parameter-efficient convolu- 

ion architectures as baselines to verify the Split&Shuffle de- 

ign’s effectiveness. As a result of the modulation and demodu- 

ation constraint in the generator, several baselines only modify 

he discriminator (i.e., D only). All the model variants are listed 

elow: 

• Group Convolution (D only) , which replaces the convolution in 

the discriminator with a group convolution. 
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Fig. 3. The proposed Channel Split&Shuffle Convolution Modules for the Generator and Discriminator. The Discriminator module has two differences from the Generator 

module: the style Mod&Demod and 1 × 1 × 1 Convolution. Overall, the proposed module reduces the number of parameters by a factor of 2 in the Generator and nearly by a 

factor of 4 in the Discriminator. Here, w 11 and w 12 denote the 3D convolution weights of the left and right branches, which are used to perform the Mod&Demod operation 

in Equations 1 –2 . 
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• Depthwise Separable Convolution (D only) , which replaces the 

convolution in the discriminator with a depthwise separable 

convolution. 
• Split&Shuffle Convolution (D only) , which applies the 

Split&Shuffle module only on the discriminator. 
• Split Convolution , which applies the channel split without 

channel shuffle. 
• Split&Shuffle Convolution , which is our final design. 

. Results 

.1. Datasets and evaluation metrics 

.1.1. Datasets 

Stanford AIMI Coronary Calcium (COCA) [21] dataset is used for 

eart CTCA images. COCA contains 787 3D coronary CT images. 

ach 3D image has a different number (ranging from 27 to 156) 

f 2D slices on the axial plane, and they add up to 39,281 axial

lices in total. For brain MRI images, we used the Alzheimers Dis- 

ase Neuroimaging Initiative (ADNI) dataset [23] . Specifically, we 

sed 991 T1 structural images from the Cognitively Normal (CN) 

esearch group. MR images from non-brain areas were removed 

y the dataset provider using the software FreeSurfer’s 3 recon-all 

unction. The processed MR images have 256 slices from all three 

lanes. 

.1.2. Evaluation metric 

In order to assess the quality of generated images, GANs usually 

se the Fr ̧E chet inception distance (FID) [51] metric, which com- 

ares the feature distributions of real and generated images. By 

efault, the Inception V3 network [52] pre-trained with 2D natural 

mages was deployed for feature extraction. However, the method 

annot be directly applied to 3D images. As such, taking into ac- 

ount the 3D medical structure, we measured the FID scores on 

he center slices of axial, sagittal and coronal planes, i.e., FID-ax, 

ID-sag , and FID-cor . Lastly, we averaged the three FID scores to 

btain FID-avg as an overall measurement. 

However, the FID alone cannot evaluate 3D medical image gen- 

ration comprehensively. The reasons are twofold: (1) the incep- 

ion model only accepts 2D image slices of a specific plan, and (2) 

he inception model is pre-trained on natural images with a large 

ap with medical images. Therefore, we also adopted the widely- 

sed metrics MS-SSIM, PSNR, and the t-Distributed Stochastic 

eighbour Embedding (t-SNE) to evaluate the performance. 
3 https://surfer.nmr.mgh.harvard.edu/fswiki 
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.2. Implementation details 

.2.1. Pre-processing 

Both the COCA and ADNI images were resized to 64 × 64 and 

28 × 128 using bilinear interpolation in the sagittal and coronal 

lanes. We aligned the axial slice number of the COCA dataset to 

2 either by consecutive slice sampling or by zero padding. For 

he ADNI dataset, we resized the axial slice number to 64 directly. 

s a result, the image resolution of COCA and ADNI datasets are 

2 × 64 × 64 ( 32 × 128 × 128 ) and 64 × 64 × 64 , respectively. The

ounsfield Unit values were clipped to [ −250 , 650] and then nor- 

alized to [ −1 , 1] . 

.2.2. Stylegan2 architecture 

The base layer (Const in Fig. 2 ) for the COCA dataset was set to

 × 4 × 4 , followed by 5 upsampling stages. For the ADNI dataset, 

he base layer was set to 4 × 4 × 4 , followed by 5 upsampling

tages. The total number of convolution channels was set to 32, 

ith each branch owing 16. The feature dimension of the mapping 

etwork was set to 64. 

.2.3. Hyper-parameters 

We followed the StyleGAN2 configuration for training, with the 

ollowing exceptions: γ = 0 . 0512 for R 1 regularization, minibatch = 

28 , learning rate lr = 0 . 0025 for training from scratch, lr = 0 . 002

or inflation initialization. For 2D GANs pre-training, the models 

re fed with 25,0 0 0K images in total. However, the 3D GANs were 

rained with 5,0 0 0K images since 3D models are slow to train. 

.3. Inflation and architecture analysis 

.3.1. Inflation 

The first step is to conduct comprehensive experiments to ver- 

fy that inflation strategies are effective for initializing the 3D 

enerative model. A 2D StyleGAN2 model is pre-trained using all 

he 39,281 axial slices to obtain the 2-dimensional convolution 

eights. Since the number of images is sufficient, the 2D model 

chieves an FID of 7.71. This means that the pre-trained 2D weights 

apture rich slice-level contextual information to generate high- 

uality 2D slices. Thus, it verifies the rationale behind inflating 2D 

re-trained weights for 3D generative models. 

Starting from the same pre-trained 2D weights, we apply all 

he proposed inflation strategies as well as a “No Inflate” base- 

ine to initialize and train the 3D StyleGAN2 model. The results are 

hown in Table 1 . It can be seen that three inflation strategies out- 

erform the “No Inflate” baseline (the other two are comparable), 

https://surfer.nmr.mgh.harvard.edu/fswiki
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Fig. 4. Performance of different inflation variants during the training process (kimgs). Among all, “Inflate-1” generally obtains good FID scores on all three views. Red arrows 

show the best FID iterations (kimgs) for “No Inflate” and “Inflate-1”. 

Table 1 

Performance of different inflation variants (lower numbers are better). 

Model FID-ax FID-sag FID-cor FID-avg 

No Inflate 104 92 112 102.7 

Inflate-1 60 83 76 73.0 

Inflate-2 68 133 110 103.7 

Inflate-3 89 119 110 106.0 

Inflate-ASC 79 108 83 90.0 

Inflate-NWI 85 87 83 85.0 
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Fig. 5. Generated images from the initial training (dashed lines in Fig. 4 ) and the 

best (red arrows in Fig. 4 ) training iterations. (a) With random weights as an initial- 

ization (No Inflate), the initially generated images are meaningless. (b) With inflated 

weights as a favorable initialization (Inflate-1), the initial generated images already 

show basic anatomical structures. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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ndicating that inflation strategies are generally effective as favor- 

ble initialization methods for 3D generative models. “Inflate-1”, 

hich only initializes one center dimension, achieves the best per- 

ormance (FID-avg) among all inflation variants. Performance grad- 

ally degrades as more weights are initialized from 2D weights 

“Inflate-2” and “Inflate-3”). We hypothesise that the overly in- 

ated 3D weights will prevent the model from freely learning the 

hird-dimensional anatomical structure. “Inflate-ASC” and “Inflate- 

WI” perform slightly worse than “Inflate-1”. 

To understand the training dynamics of various inflation strate- 

ies, we plot the FID scores with respect to the training iteration 

measured by the number of 1,0 0 0 training images, i.e., kimgs) 

n Fig. 4 . In general, “Inflate-1” achieves the best performance 

uring training, consistent with Table 1 . Most inflation variants 

chieve significantly better FID scores than the baseline at the 

tart of training (i.e., kimgs = 0), demonstrating the effectiveness of 

D weight priors in training StyleGAN2. “Inflate-NWI” initially per- 

orms worse because it modifies the original 2D weights, but in 

he end, it outperforms the baseline since the prior informative 2D 

eights have made a big difference. 

In Fig. 5 , we randomly generated the axial/sagittal/coronal slices 

f CT images for both the “No Inflate” baseline and our best vari- 

nt “Inflate-1” to intuitively investigate why the inflation strategy 

orks. Specifically, we show the generated images from the initial 

raining iteration (i.e., the dashed lines in Fig. 4 ) and the best train-

ng iteration (i.e., the red arrows in Fig. 4 ). It is easy to observe that

ith inflation as a favorable initialization, the generated images al- 

eady show meaningful anatomical structures even before training 

e.g., FID-ax = 201). In contrast, the randomly initialized “No Inflate”

enerates blurry meaningless images before training (FID-ax = 440). 

his comparison provides an intuitive explanation for the working 

echanism of the inflation strategy: with effective inflation, the 3D 

enerative model can inherit meaningful 2D anatomical priors for 

etter subsequent training. Furthermore, starting from better initial 

eights, the inflated model (“Inflate-1”) is trained to achieve supe- 

ior generative performance compared to the “No Inflate” baseline 

e.g., FID-ax = 60 vs FID-ax = 104). 
7 
StyleGAN2’s discriminator and generator have different struc- 

ures by design. This motivates us to examine how inflation affects 

he discriminator and the generator. Specifically, we selected the 

hree best inflation variants (“Inflate-1”, “Inflate-ASC”, and “Inflate- 

WI”) and performed three sets of experiments ( Table 2 ): inflating 

he generator only (G), inflating the discriminator only (D), and in- 

ating both the generator and discriminator (G&D, default). This 

nalysis reveals two observations: (1) inflating the entire model 

G&D) always achieves the best performance, (2) the generator 

lays a more important role in the inflation strategy, which is rea- 
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Table 2 

Inflation on Generator (G) and Discriminator (D). 

Model Module FID-ax FID-sag FID-cor FID-avg 

Inflate-1 G 105 82 88 91.7 

D 85 94 104 94.3 

G&D 60 83 76 73.0 

Inflate-ASC G 93 96 94 94.3 

D 123 113 127 121.0 

G&D 79 108 83 90.0 

Inflate-NWI G 85 91 94 90.0 

D 90 92 98 93.3 

G&D 85 87 83 85.0 

Table 3 

Parameter and performance comparison on different architectures. Models with “- 

D” mean only the discriminator owns the modified architecture. 

Model #param FID-ax FID-sag FID-cor FID-avg 

Baseline 0.600M 104 92 112 102.7 

Group-D 0.434M 80 130 105 105.0 

Depthwise-D 0.367M 67 136 117 106.7 

Split&Shuffle-D 0.416M 84 121 118 107.7 

Split 0.291M 109 151 146 135.3 

Split&Shuffle 0.291M 85 113 91 96.3 
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Fig. 6. Generated images of higher resolution ( 128 × 128 ) from the Baseline and 

our Split&Shuffle method. Baseline sometimes shows anatomically inconsistent re- 

gions (marked in red boxes). Our method can generate images with better anatomic 

structure and possible calcium slices (marked in blue boxes), which will be helpful 

for downstream tasks. (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 
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onable because the generator is responsible for generating images 

ith the style vectors to control the generation. 

.3.2. Architecture 

Our next step was to conduct experiments to comprehensively 

nvestigate efficient 3D architectural designs. At first, all model 

ariants, including the baseline, are trained from scratch without 

eight inflation. The FID values and the number of parameters are 

hown in Table 3 . The models with a “-D” suffix apply efficient 

odules only on the discriminator, thus only leading to a slightly 

educed parameter number (e.g., 0.434M vs. 0.600M). “Group-D”, 

Depthwise-D”, and “Split&Shuffle-D” have a different number of 

arameters because the architectures are different. By contrast, the 

roposed “Split&Shuffle” design reduces more than half of the pa- 

ameters compared to the baseline (0.291M vs 0.600M). 

With regards to generation performance, the proposed 

Split&Shuffle” architecture achieved the better FID-avg with 

he least number of parameters, proving its efficiency and ef- 

ectiveness. All the “-D” models produce similar results to the 

aseline, indicating that modifying just the discriminator has 

ittle influence on the generation quality. Note that owing the 

ame number of parameters, “Split” performs much worse than 

he “Split&Shuffle” design. As a result, the Channel Shuffle in 

ig. 3 plays a crucial role in ensuring performance. 

Then, we examined how efficient architectures can be com- 

ined with inflation strategies for further performance enhance- 

ent. Specifically, we adopted the best inflation strategy “Inflate- 

” and applied it to all the models in Table 3 . The results are

hown in Table 4 . In this experiment, each individual model has 

ts own pre-trained 2D weights due to the differences in architec- 

ure. Table 4 demonstrates that all models achieved good FID-2D 

alues, once again verifying the rationale for inflating informative 

D weights to train 3D GANs. Since the number of 2D image slices 

s sufficient for 2D pre-training, “Baseline” with the largest number 

f parameters achieved the best FID-2D. However, for the final 3D 

raining, our “Split & Shuffle” model achieves the best performance 

FID-avg) with the least number of parameters. Compared with the 

Baseline” model, “Split & Shuffle” reduces the FID-avg by 14.7 with 

nly 48.5% of the parameters. As for the discriminator-only vari- 

nts with the suffix “-D”, they were much worse than the “Inflate- 

” baseline. Without channel shuffle operation, “Split” achieved the 
8

orst performance, again showing the indispensable role of chan- 

el shuffle in our architecture design. 

.3.3. Image resolution 

To show that our method can generate high-resolution images 

or practical application, we increased the resolution of COCA to 

28 × 128 . We set the base layer to 1 × 4 × 4 , followed by six up-

ampling stages. The model capacity was also increased by using 

4 convolution channels. 

The quantitative results are shown in Table 5 . Compared with 

he Baseline (same as Table 3 ), Split&Shuffle achieves much bet- 

er performance with fewer model parameters. The visualization 

f the generated image slices is shown in Fig. 6 . The generated 

mage slices by our method show a more feasible heart anatomy 

tructure and higher image quality. In addition, since COCA con- 

ains coronary calcium, our method generated image slices with 

ossible calcium, which are more realistic. 

.4. Comparison with state-of-the-art methods 

Finally, we compared the performance of our method with the 

ublished 3D generative models in Table 6 (COCA) and Table 7 

ADNI). The comparison methods included the following 3D gen- 

ration baselines: 

• 3D-WGAN-GP [53] , a 3D extension of Wasserstein GAN with 

Gradient Penalty to alleviate training instability. 
• 3D-VAE-GAN [54] , consisting of an encoder, a decoder and a 

discriminator. 
• 3D- α-GAN [55] , applying the code discriminator and encoder 

on top of the conventional GANs to alleviate the collapse and 

blurriness. 
• 3D- α-WGAN-GP [22] , utilizing both the α-GAN structure and 

the WGAN-GP loss. 
• 3D-StyleGAN2 [35] , a direct 3D extension of the 2D StyleGAN2 

model. 

On both the heart and brain datasets, the proposed method 

utperforms all the state-of-the-art methods by a large margin, 

emonstrating its effectiveness. Among all comparison methods, 

he first four baselines have a much greater number of parame- 

ers than our method but achieved inferior performance. Although 

D-StyleGAN2 has approximately twice as many parameters as our 

ethod, it still performed much worse. Because the 3D medical 

mage generation lacks sufficient 3D training images, most base- 

ines are short of sufficient 3D training images, leading to inferior 
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Table 4 

Model performance when inflation strategy (“Inflate-1”) is applied to different archi- 

tectures. FID_2D denotes the pre-trained 2D model performance. 

Model #param FID-2D FID-ax FID-sag FID-cor FID-avg 

Baseline 0.600M 7.7 60 83 76 73.0 

Group-D 0.434M 10.9 78 76 76 76.7 

Depthwise-D 0.367M 14.0 87 129 84 100.0 

Split&Shuffle-D 0.416M 10.6 95 112 101 102.7 

Split 0.291M 12.2 120 144 106 123.3 

Split&Shuffle 0.291M 11.6 46 66 63 58.3 

Table 5 

Model performance comparison of higher resolution ( 128 × 128 ) images on COCA 

dataset. Baseline is the same as Table 3 . 

Model #param FID-ax FID-sag FID-cor FID-avg 

Baseline 2.628M 92 103 81 92.0 

Split&Shuffle 1.414M 55 67 34 52.0 

Table 6 

Comparison with state-of-the-art methods on COCA (heart) dataset. 

Model #param FID-ax FID-sag FID-cor FID-avg 

3D-WGAN-GP 1.399M 191 223 191 201.7 

3D-VAE-GAN 6.389M 196 281 272 249.7 

3D- α-GAN 2.811M 91 88 80 86.3 

3D- α-WGAN-GP 2.811M 70 86 69 75.0 

3D-StyleGAN2 0.600M 104 92 112 102.7 

Split&Shuffle (Ours) 0.291M 46 66 63 58.3 

Table 7 

Comparison with state-of-the-art methods on ADNI (brain) dataset. 

Model #param FID-ax FID-sag FID-cor FID-avg 

3D-WGAN-GP 1.817M 161 161 231 184.3 

3D-VAE-GAN 11.001M 167 122 224 171.0 

3D- α-GAN 3.635M 73 77 99 83.0 

3D- α-WGAN-GP 3.635M 74 72 87 77.7 

3D-StyleGAN2 0.633M 114 89 99 100.7 

Split&Shuffle (Ours) 0.325M 65 67 82 71.3 
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Fig. 7. t-Distributed Stochastic Neighbour Embedding on COCA dataset. 
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erformance. As an alternative, our method uses both the weight 

nflation and Split&Shuffle designs to mitigate the reliance on a 

arge number of 3D images for training. 

Generation quality and generation diversity Except for FID 

cores, we considered two widely-used evaluation metrics: PSNR 

nd MS-SSIM. Specifically, PSNR is calculated between the real 

nd generated images to evaluate the generation quality. Follow- 

ng [22] , MS-SSIM is calculated on pairs of generated images to 

valuate the generation diversity (a smaller value means better di- 

ersity). The results are shown in Table 8 . Our method achieved 

he best PSNR and MS-SSIM performance on both the heart and 

rain datasets, demonstrating that our method can generate high- 
able 8 

SNR and MS-SSIM evaluations on ADNI (brain) and COCA (heart) datasets. PSNR 

as calculated between real and generated images to evaluate generation quality 

higher values are better). MS-SSIM was calculated on pairs of generated images to 

valuate generation diversity (lower values are better). 

COCA (heart) ADNI (brain) 

Model PSNR ↑ MS-SSIM ↓ PSMR ↑ MS-SSIM ↓ 
3D-WGAN-GP 16.22 0.9988 27.11 0.9945 

3D-VAE-GAN 16.38 0.8436 27.03 0.9719 

3D- α-GAN 16.19 0.8288 27.42 0.8750 

3D- α-WGAN-GP 15.82 0.7916 27.71 0.8678 

3D-StyleGAN2 16.04 0.8362 27.80 0.8999 

Split&Shuffle (Ours) 16.56 0.7513 28.57 0.8488 

9

uality 3D medical images with better diversity. We also note that 

he PSNR scores on the heart dataset are smaller than that on the 

rain dataset. This is due to the large variations among the un- 

ligned heart images. In contrast, the brain images are aligned and 

xhibit smaller variations. 

t-Distributed Stochastic Neighbour Embedding (t-SNE) To 

etter understand the distributions of generated and real images, 

e performed t-SNE on real images, our method, 3D- α-WGAN-GP, 

nd 3D-StyleGAN2. The visualization of the COCA dataset is shown 

n Fig. 7 . Although the distributions of both our method and 3D- 

-WGAN-GP approach the real images, our method is closer to the 

eal images. The distribution of 3D-StyleGAN2 is far from the real 

mages, consistent with its large FID score. As to the visualization 
Fig. 8. t-Distributed Stochastic Neighbour Embedding on ADNI dataset. 
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Fig. 9. Generated images from the initial training and the best training on the brain 

ADNI dataset. Our method shows good initial brain anatomy, especially for the axial 

view. 
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f the ADNI dataset in Fig. 8 , only our method shows a similar dis-

ribution to the real images. 

Fig. 9 shows examples of brain slices generated using all com- 

arison methods. Our method generates high-quality brain slices 

n three planes. Because of the random weight initialization, the 

omparison methods generate random images at the start of the 

raining process without any meaningful patterns. Due to its train- 

ng on sufficient 2D axial slices, our model exhibits good anatomy 

ight at the beginning. Combining our Split&Shuffle design with 

his anatomy prior allows our model to generate better results 

ith fewer parameters. 

. Conclusion 

The purpose of our study was to address the important prob- 

em of generating reliable synthetic 3D medical images. The lack 

f annotated 3D data and inefficient parameter settings hinder the 

ffective training of 3D medical generative models. A novel GAN 

odel (i.e., 3D Split&Shuffle-GAN) is proposed to remedy these 

roblems from two perspectives: training strategy and network ar- 

hitecture. For the training strategy, we used the weight inflation 

echnique to pre-train a 2D GAN model and inflate the 2D con- 

olution weights as a favorable method for initializing a 3D GAN 

odel. For network architecture, we devised parameter-efficient 

hannel Split&Shuffle modules for the discriminator and genera- 

or of the GAN. We conducted comprehensive experiments to de- 

ermine the best weight inflation variant and network architecture 

esign. The effectiveness of our method is verified on both the 

eart and brain datasets. Further exploration of network weight 

nitialization strategies beyond inflation and the design of new ar- 

hitectures will be completed in the future. 
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